
METAFONT for the AMIGA

Documentation of version 2.71

Andreas Scherer

Abt-Wolf-Straße 17

96215 Lichtenfels

Germany

March 27, 1994

Abstract

This document describes a new implementation of METAFONT 2.71
for the Commodore Amiga. METAFONT is the name of a computer font
generation system invented by Prof. Donald E. Knuth of Stanford Univer-
sity. It reads text files prepared with ‘programs’ that specify the outline of
characters in fonts of type, graphical symbols, or other elements for print-
ing high quality documents. Typesetting systems like TEX make use of
the font metric information produced by METAFONT and printer drivers
or screen previewers make use of the pixel information as to where to
put the ‘ink.’ The usage of the associated programs is described to some
detail, but no introduction to the METAFONT language itself is given.
Refer to the bibliography (section 6 of this text) for detailed information
about METAFONT programming.

Copyright c© 1993, 1994 Andreas Scherer

Permission is granted to make and distribute verbatim copies of the electronic
form of this document provided that the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

1

Contents

1 Copyright 3

2 System requirements 3

3 Compatibility 4

4 Installation 4

4.1 Extracting the archive . 4
4.2 Controlling memory sizes . 6
4.3 Setting up the environment . 8

5 Running the programs 9

5.1 Creating new bases with IniMF 9
5.2 Creating new fonts with VirMF 10
5.3 Converting between gf- and pk-formats 12
5.4 Fine control of the fonts with GFtoDVI 13
5.5 Pretty printed font listings with MFT 13
5.6 Analyzing gf- and pk-files . 13

6 For further reading 14

7 History 15

8 Source code 16

2

1 Copyright

The METAFONT program and the associated utilities are copyright c© 1984 by
Donald E. Knuth. All rights are reserved. The complete WEB source code is
published as [5].

This new implementation of METAFONT 2.71 for the Commodore Amiga is
declared to be FREEWARE. All rights are reserved. You may use, copy, and
distribute the package in complete archived or installed form and for a nominal
fee for media and shipping only.

Although considerable effort has been expended to make the METAFONT

program correct and reliable, no warranty is implied; the author and the im-
plementor disclaim any obligation or liability for damages, including but not
limited to special, indirect, or consequential damages arising out of or in con-
nection with the use or performance of this software.

This work has been a “labor of love” and both the author and the imple-
mentor hope that users enjoy it.

Please send comments, suggestions, bug reports, etc., to Andreas Scherer,
Abt-Wolf-Straße 17, 96215 Lichtenfels, Germany. A “developer’s kit” containing
the complete source code with all modifications and enhancements is available
at this address. (See section 8 for details.)

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Publishing Company.
Commodore is a registered trademark of Commodore Electronics Limited.
Amiga, AmigaDOS, Amiga Kickstart, and Amiga Workbench are registered
trademarks of Commodore-Amiga Incorporated.
SAS and SAS/C are registered trademarks of SAS Institute Incorporated.

2 System requirements

The minimum configuration tested with this implementation of METAFONT was
a Commodore Amiga 2000 running the standard 68000 Motorola processor and
2 MB of ChipRAM, although a total of only 1 MB were actually used with the
default configuration. Memory requirement may increase depending on the font
to be created and the settings in the METAFONT configuration. (See section 4.2.)
The operating system was Kickstart 37.175 and Workbench 38.36. All programs
included in this package are capable of running under version 1.3 of the operating
system. Only the online display of METAFONT requires version 2, because of
the use of some advanced graphics routines, but this feature is protected when
used with version 1.3.

There are special versions of the IniMF and VirMF programs provided for ad-
vanced hardware configurations like the Amiga 3000 and Amiga 4000 or Amigas

3

with accelerator boards. These two programs rely on features of the 68020 Mo-
torola processor not present in the 68000 processor. They will run approximately
twenty to thirty percent faster, but they will crash on non-accelerated Amigas!
All other programs that come with this package are compiled for use on any
standard Amiga configuration.

METAFONT is a large system intended for large tasks, so this is no greasy
kids’ stuff! The creation of cmr10 for the 300 dpi DeskJet printer driver of
PasTEX can be as quick as 48 seconds on a 50 MHz 68030 accelerator board
with a coprocessor and sufficient 32 bit FastRAM but as slow as 10 minutes
and 5 seconds on a standard 7 MHz Amiga with slow 16 bit RAM, although the
programs are capable of running on both configurations.

3 Compatibility

This is METAFONT 2.71 for the Commodore Amiga. It is fully compatible with
the original implementation by Donald E. Knuth and has passed the TRAP test
as of January 25, 1992 gracefully. Only permissible differences as described in
trapman.tex were encountered. diff files documenting the latest run of the
TRAP test will be made accessible by the implementor on request. (See section 8
for details.)

Also included are GFtoDVI version 3.0 (October, 1989), GFtoPK version 2.3
(July, 1990), GFtype version 3.1 (March, 1991), MFT version 2 (October, 1989),
PKtoGF version 1.1 (October, 1990), and PKtype version 2.3 (November, 1989).

4 Installation

4.1 Extracting the archive

This “METAFONT user’s kit” is a self-contained system; everything you need
for the creation of beautiful fonts for TEX is here. This subsection describes
the various subdirectories and their contents. Normally this package should
come in the form of an LHA archive. It will contain a working installation of
all programs and scripts, except that some environmental settings have to be
installed by hand. Sorry, there is no ‘Installer’ script, but installation is really
very easy. First you have to extract the files by the command

> LHa x MetaFont[.lha] <path or device for installation>

(You should have the LHa program to do this. If you don’t, look for Fish Library
Disk 715 for the current version.1) A root directory MetaFont will be created
and will contain the complete archive in convenient subdirectories described
below. You should “assign” the name “MF:” to this root directory. Less than
3 MB of free disk space are needed to install the complete METAFONT system.

1But don’t send any money to Stefan Boberg, because you won’t get what you want!

4

MetaFont/bases: This directory is the home of the ‘base’ files that META-
FONT reads at high speed at the beginning of a run. Here you will find
the file plain.mf (version 2.71) and some startup files for ‘plain’ and
‘cm.’ New base files should be created or copied herein. The environment
variable MFBASES should contain an entry pointing to this directory in
order that METAFONT can find them. (See section 4.3 for details about
the environment variables recognized by METAFONT.)

MetaFont/bin: The most important part of this package are the binary files of
the programs for METAFONT and the associated utilities. You should tell
the operating system to look for the programs here by adding the installa-
tion path to the PATH environment variable. A more detailed description
about running the programs will be given in the next section 5.

MetaFont/config: The present implementation of METAFONT is capable of
resetting the memory configuration on startup in case the inner settings
are too meager for a given task and METAFONT aborts its run with the
error message METAFONT capacity exceeded, sorry... The configura-
tion setup file mfmemory.config contains lines of the form

set memmax 65530 % default 30000

set screenheight 200 % default 1024

set <internal size> <user value> % default <value>

You may change the settings (in decent ranges!) or delete some lines from
the file, thus resetting to internal values (given in the ‘default’ column).
The environment variable MFCONFIG should contain an entry that points to
this directory. (See section 4.3 for details about the environment variables
recognized by METAFONT and section 4.2 for details about the memory
configuration.) The file modes contains a list of settings appropriate for
the ready-to-work base file provided with this user’s kit2. Several printers
and the standard previewer are supported. You may change things here
according to your personal configuration.

MetaFont/doc: At least this directory you have already visited if you are
reading this file. Here you find the documentation for METAFONT 2.71 in
both German and English. The LaTEX source files must be present, the
dvi-output may have been deleted due to space limitations, but you can
recreate it with a running TEX installation; no special macros or unusual
fonts are necessary for this file.

MetaFont/inputs: This directory is for METAFONT programmers and system
administrators only. It contains text files necessary for the creation of

2These are not compatible with the PasTEX settings from pastex-modes.mf of the CallMF

package; they refer to the standard modes.mf distribution instead.

5

new or changed base files and the complete Computer Modern font family,
the standard for most TEX users. You may add your own font programs
here. METAFONT will find them when the environment variable MFINPUTS
has an entry for this directory. (See section 4.3 for details about the
environment variables recognized by METAFONT.)

MetaFont/pool: METAFONT (as well as TEX) is a Pascal program, so it has
to use a special method of string handling due to restrictions implied by
this programming language. The ‘pool’ file mf.pool contains all texts and
messages METAFONT is willing to print to your screen or the log file. It
was automatically generated by TANGLE in the process of compilation and
should not be deleted or changed in any way.

MetaFont/rexx: This directory contains the public domain package ‘CallMF’
(version 1.0), consisting of three ARexx scripts by Georg Heßmann, Martin
Bokämper, Jörg Höhle, and Ulrich Wisser. It is very useful in connection
with Heßmann’s PasTEX. Both the previewer and the printer driver refer
to ‘CallMF’ in case a font is missing at a certain size. The ARexx scripts
will create the missing fonts automatically or in batch mode. You will
find a documentation of ‘CallMF’ [1] in a subdirectory of rexx, so no
more information about installation and usage of ‘CallMF’ is given at this
place. Just a word about possible incompatibilities. In this distribution I
use only modes from the standard distribution modes.mf, PasTEX relies
on pastex-modes.mf. Unfortunately the naming convention in these two
files is different, so some manual adjustment will be necessary.

4.2 Controlling memory sizes

Originally METAFONT (and TEX) is a Pascal program not capable of dynami-
cally controlling its memory allocation. Normally to change METAFONT’s mem-
ory size you have to recompile the source code with changed internal settings.
However, you need no longer fear the “ask a wizard to enlarge me” mes-
sage, you can do some wizardry yourself! The present implementation is done
with the help of the Web2C language converter and so it is possible to include a
special feature for controlling the internal variables at runtime.

METAFONT uses an extra path and environment variable MFCONFIG. (See
section 4.3 for further details on the environment.) The IniMF and VirMF

programs will search these directories for a file called mfmemory.config, which
is expected to contain instructions, one per line, of the form

set memmax 100000

set screenheight 400

set scalefactor 2

The example file given in the config directory ‘sets’ what are my present stan-
dard configuration, slightly higher than the internal defaults. Not all settings

6

need to be given in the file. Note that you can’t just set everything to the
maximum – that would require more than 8 Giga bytes of FastRAM!3

If you create a standard base file with IniMF, any change to the configu-
ration mfmemory.config will be acceptable for VirMF in connection with this
specific base, except changes to memtop. This will result in the METAFONT

message “(Fatal base file error; I’m stymied),” indicating that this base
was produced with a different IniMF.

Here is a complete list of all parameters allowed in the configuration file,
their internal defaults and some rules for their minimum and maximum values:

Setting Default Maximum Purpose
memmax 30000 maxhalfword Size of main storage
maxinternal 100 ≤ 259774 Number of internals
bufsize 500 maxhalfword Input characters
errorline 72 maxhalfword Error context width
halferrorline 42 <errline−15 First error line
maxprintline 79 ≥ 60 Output text line width
screenwidth 768 4095 Width of display screen
screenheight 1024 4095 Height of display screen
stacksize 30 300 Number of input sources
maxstrings 2000 maxhalfword Number of strings
poolsize 32000 maxhalfword Characters in strings
movesize 5000 10000 Storage for octant moves
maxwiggle 300 1000 Autorounded points per cycle
gfbufsize 100 4096 Size of the output buffer
pathsize 300 1000 Number of knots in a path
bistacksize 785 785 Stack for bisection algorithm
headersize 25 100 Number of TFM header words
ligtablesize 5000 32510 Ligature/kern steps
maxkerns 500 1000 Distinct kerns
maxfontdimen 50 100 Number of ‘fontdimen’s
memtop 30000 memmax Largest memory index
scalefactor 1 10 Display is ‘SF’ times reduced
maxinopen 6 20 Number of input files
paramsize 150 1000 Macro parameters

Some of these values are internally multiplied by a factor of 4 or 8, so the actual
number of bytes needed for a specific setting is a little bit hard to describe.
As long as you don’t encounter problems, I recommend that you stick to the
defaults or the standard configuration file provided with this package. In most
cases of insufficient memory size, the only value to increase is memmax, and this
was actually tested up to the horribly high value 750,000 on my Amiga 2000
with 8 MB of 32 bit FastRAM.

3If you have that much, I don’t believe you!

7

You may control the size of the online display by changing the values for
screenwidth, screenheight, and scalefactor. The meaning of the first two
should be clear, just keep in mind, that screenheight denotes the interlaced

setting, although non-interlaced screenmodes will automatically be detected and
taken care of, i.e., only half as much pixel lines will actually be drawn. And the
two values don’t set the size of the window, but the respective innerwidth and
innerheight. The scalefactor is a reduction factor, i.e., the online display
will be reduced by this factor in both its width and height. To make sensible
use of this feature, the plain.base provided with this package was compiled
with the internal settings

screen_rows:=4095; screen_cols:=4095; % infinity

defined in the printer modes file. When drawing on screen METAFONT uses the
smaller value of screenheight and screen rows respectively screenwidth and
screen cols, so actually the configuration overrides the internal settings.

4.3 Setting up the environment

METAFONT acknowledges a couple of environment variables in the course of its
file searching algorithm, for the ‘E’ feature to start your system editor in case of
an error, and for setting up the online display. The IniMF and VirMF programs
use multiple search paths when looking for command base files, the configuration
file mfmemory.config, font description programs, and the text pool file mf.pool.
Either you use the system call “SetEnv <variable> <setting>” to introduce
your personal system configuration or you keep the internal defaults. Here is a
list of the four path environments, their default settings and what METAFONT

expects to find in the respective directories.

Environment Default setting Files
MFBASES ",MF:bases" *.base dump files
MFCONFIG ",MF:config" mfmemory.config

MFINPUTS ",MF:inputs" *.mf program files
MFPOOL ",MF:pool" mf.pool string file

The comma in these defaults denotes the current directory as the first entry,
i.e., if you want to search in ‘RAM:’ first, you could say "RAM:,,MF:inputs",
thus making the current directory the second search path. If the environment
variables are not set by the ‘SetEnv’ function call the internal defaults will
become active and the current directory is always searched first, so you may
want to keep them.

In case of an error or an interruption, when METAFONT prompts you with
a question mark you may answer by typing ‘e’ (or ‘E’), thus invoking your
text editor. This feature is controlled by the MFEDIT environment variable that
holds a calling sequence to bring up your preferred system editor in the currently

8

processed file (not necessaryly the file you called METAFONT with) and in the
offending line. Specify any program call or script that brings up your editor in
file ‘%s’ and line ‘%d.’ The default setting is as follows, it invokes the MEmacs

editor provided with the operating system:

EDITOR "MEmacs goto %d %s"

You will find some ARexx scripts suitable for the Cygnus Ed Professional editor
in the rexx directory. If you want to use them, simply set the environment
variable MFEDIT to the (string) value

"rx MF:rexx/MFEdit.rexx %s %d"

The second script NameStruc should be placed in the REXX: directory, because
it is called directly from within MFEdit.rexx.

Also there is an online display feature as described in the ‘METAFONTbook’
by Don Knuth [4]. As it makes use of some advanced library functions not
present in older versions of the Amiga operating system, it will work only with
AmigaDOS 2.0 and higher (sorry). To activate this feature, set the environment
variable MFWTERM to the value "amiterm" and every proof or smoke mode run
will display its results on your screen.

5 Running the programs

5.1 Creating new bases with IniMF

Although there is a plain.base file in this package, you may want to create
additional base files that include other METAFONT commands than the default
set described in the ‘METAFONTbook’ [4]. For this purpose there is the IniMF

program, capable of creating such binary bases for high-speed inclusion. If you
call IniMF from the CLI (command line input, the shell) without an argument,
it will prompt you with two asterisks, meaning “METAFONT is all geared up for
action, please type a file name to continue.”

> IniMF

This is METAFONT, C Version 2.71 (INIMF)

**

If you follow the concept proposed here, it is very easy to do the next step.
Answer the METAFONT prompt with the name of an “initialization program”
like plain.inimf or cm.inimf and the rest will be done automatically, resulting
in a new base file plain.base or cm.base. Or you can type in consecutive input
commands to load multiple files for inclusion in the base file. The last command
should be dump; this will tell IniMF to create the compressed command file and
to terminate.

Alternatively you may type a one-liner like

9

> IniMF plain.inimf

and the results will be exactly the same.
If you use plain.inimf or cm.inimf as proposed here, the standard dis-

tribution modes.mf (current version 1.2) by “Karl Berry and the METAFONT

community” is added to your base file. This file contains mode descriptions for
a variety of output devices, such as many matrix, laser or jet printers, photo
typesetters, and screen previewers at different resolutions. There is a slight dis-
advantage when you include the complete modes.mf file, the base will heavily
increase in its size. Feel free to extract only the modes you need for your per-
sonal configuration and to put them into a file local.mf. You should replace
the line “input modes” by “input local” in plain.inimf and recreate the
base file with the help of IniMF as described above.

PasTEX users who want to use the CallMF package may encounter some
problems, because Georg Heßmann chose to create his own modes which are not
compatible with modes.mf. These are collected in the file pastex-modes.mf in
the MF:rexx/callmf/inputs directory. You can use these modes, but you will
have to replace the entries in modes and recreate the base file to work with
them. Or you can setup PasTEX to work with modes.mf.

5.2 Creating new fonts with VirMF

The production version of METAFONT is called ‘VirMF’ and is slightly different
to IniMF. It is designed for high-speed production runs and is incapable of
creating base files, but it can read such command bases. Just like with IniMF

you have two possibilities to call VirMF. If you simply type its name (and if the
operating system knows where to find the program), METAFONT will prompt
you for an interactive dialog.

> VirMF

This is METAFONT, C Version 2.71

**

You may answer this prompt with any valid command, assuming ‘plain’ base
preloaded as described in the ‘METAFONTbook’ [4].

For an easy beginning try the following (quoted from page 31 of the ‘META-
FONTbook’ [4]). Type ‘\relax’—that’s backslash, r, e, l, a, x—and hit 〈return〉
(or whatever stands for “end-of-line” on your keyboard). METAFONT is all
geared up for action, ready to make a big font; but you’re saying that it’s all
right to take things easy, since this is going to be a real simple run. The backslash
means that METAFONT should not read a file, it should get instructions from
the keyboard; the ‘relax’ means “do nothing.”

The machine will respond by typing a single asterisk: ‘*’. This means it’s
ready to accept instructions (not the name of a file). Type the following, just
for fun:

10

drawdot (35,70); showit;

and 〈return〉—don’t forget to type the semicolons along with the other stuff. A
more-or-less circular dot should now appear on your screen! And you should
also be prompted with another asterisk. Type

drawdot (65,70); showit;

and 〈return〉, to get another dot. (Henceforth we won’t keep mentioning the
necessity of 〈return〉ing after each line of keyboard input.) Finally, type

draw (20,40)..(50,25)..(80,40); showit;

shipit; end.

This draws a curve through three given points, displays the results, ships it to an
output file, and stops. METAFONT should respond with ‘[0]’, meaning that it
has shipped out a character whose number is zero, in the “font” just made; and
it should also tell you that it has created an output file called ‘mfput.2602gf’.

Alternatively you may specify one or more arguments on the command line
when calling VirMF. The first argument may be the name of an alternative
base file by prepending a & sign (as in &plain) and there may be a string of
commands that will be executed after the base has been installed. For example,
if you want to create a font at a specific resolution, type something like the
following:

> VirMF &plain "\mode:=amiga; mag:=magstep2; input cmr10"

You have to type the quotation marks because of the semicolons. They have
a special meaning for the Amiga operating system. This command will create
the standard text font cmr10 for the screen previewer at resolution 100 dpi
but magnified twice, so the resulting font will get the name cmr10.144gf and
METAFONT will write the following text to your screen (and into the log file).

This is METAFONT, C Version 2.71

(cmr10.mf (cmbase.mf) (roman.mf (romanu.mf [65] [66] [67] [68]

[69] [70] [71] [72] [73] [74] [75][76] [77] [78] [79] [80] [81]

[82] [83] [84] [85] [86] [87] [88] [89] [90]) (romanl.mf [97]

[98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108]

[109] [110] [111] [112] [113] [114] [115] [116] [117] [118]

[119] [120] [121] [122]) (greeku.mf [0] [1] [2] [3] [4] [5] [6]

[7] [8] [9] [10]) (romand.mf [48] [49] [50] [51] [52] [53] [54]

[55] [56] [57]) (romanp.mf [36] [38] [63] [62]) (romspl.mf [16]

[17] [25] [26] [27] [28]) (romspu.mf [29] [30] [31]) (punct.mf

[33] [60] [35] [37] [39] [40] [41] [42] [43] [44] [46] [47] [58]

[59] [61] [64] [91] [93] [96]) (accent.mf [18] [19] [20] [21]

[22] [23] [24] [32] [94] [95] [125] [126] [127]) (romlig.mf [11]

[12] [13] [14] [15]) (comlig.mf [34] [45] [92] [123] [124])))

11

Font metrics written on cmr10.tfm.

Output written on cmr10.144gf (128 characters, 7276 bytes).

Transcript written on cmr10.log.

If you know a little bit of the METAFONT language, it should be clear what
else you can do here; if you don’t, I recommend that you buy the ‘META-
FONTbook’ [4] or the second volume of Kopka’s series [9].

5.3 Converting between gf- and pk-formats

METAFONT (and TEX) is a highly portable programming system available for
a wide variety of computing machines from small systems like the Amiga to
“number crunching monsters.” Also its binary output is intended to be inde-
pendent of a special hardware configuration. As in the example run listed in
section 5.2, METAFONT normally produces threefold output files.

Typesetting systems like TEX don’t know where to put the ‘ink,’ they only
want information about the respective sizes of the characters and their positions
in a font. These informations are written into the ‘tfm’ file (cmr10.tfm in the
example run) and contain the “(TEX) font metric” information.

Printer drivers or screen previewers that read “device independent files”
produced by TEX or other programs need the actual information about the
shapes of the characters they want to display. METAFONT writes the pixel
information about every character in a font of type in the socalled “generic
font format”, i.e., it writes a ‘gf’ file (cmr10.144gf in the example run). The
file extension denotes the specific resolution of the produced font in “dots per
inch,” so you can distinguish between previewer fonts and printer fonts. The
“generic font” format is very convenient at this place, and even some device
driver programs can handle them directly.

More often your TEX system will deal with something called the ‘pk’ rep-
resentation of the pixel information. ‘pk’ files contain the same information as
their ‘gf’ counterparts, but in a highly compressed format, so that ‘pk’ files
are much smaller. The conversion between the two pixel information formats is
done by means of two programs, GFtoPK and PKtoGF. You call these programs
in the following way

> GFtoPK [-v] gffile [pkfile]

> PKtoGF [-v] pkfile [gffile]

The ‘-v’ option tells the programs to be a little more ‘verbose’, else you won’t
see any screen output. The first argument denotes the input file (don’t leave
the extension out) in the respective format. The optional second argument
denotes the output file in the alternative format. If you don’t give this second
argument, the extension of the input file will be transformed in a standard way
to the extension of the output file. The command line

> GFtoPK cmr10.144gf

12

will transform cmr10.144gf to cmr10.144pk. You may specify a full path name
for the second argument and the output file will be created where you want it.

5.4 Fine control of the fonts with GFtoDVI

METAFONT knows two special modes ‘proof’ and ‘smoke,’ corresponding to
virtual devices with a resolution of 2602 dpi. The programGFtoDVI can produce
pretty printed hardcopies of fonts created for these devices. Simply type

> GFtoDVI

and GFtoDVI will prompt you for a gf-filename. You may change some internal
settings for this run by appending a slash to this filename and GFtoDVI will
prompt you for “special font substitutions,” i.e., the replacement of ‘gray’ or
‘black’ fonts for a special output device. (See the ‘METAFONTbook’ [4] for de-
tails.) Like most other programs, GFtoDVI is capable of accepting its arguments
directly from the command line input, so you may type

> GFtoDVI cmr10.2602gf/

and you will be prompted for further input.

5.5 Pretty printed font listings with MFT

Another special feature of this implementation is the MFT program that trans-
forms ordinary METAFONT program source files into TEX input files for format-
ted output of the source listing. The only command line argument necessary is
the name of a ‘mf’-file containing (parts of) a METAFONT program. You may
influence the working of MFT by applying other formats than the plain.mft.
It is fun to play with other settings and options.

> MFT file[.mf] [-cs] [change[.ch]] [style[.mft]]

5.6 Analyzing gf- and pk-files

The last two programs in this distribution are for font testing purposes. They
will provide you with textual information about the contents of the pixel files
in ‘generic’ and ‘compressed’ format.

> GFtype [-m] [-i] gffile

> PKtype pkfile

The two options for GFtype mean “Mnemonic output” and “pIxel output” re-
spectively. This will add more information to the output, especially the outline
of the characters in the form of ASCII ‘pictures’ for fine control of what META-
FONT produces.

13

6 For further reading

Here is a short list of literature related to METAFONT and its companions. You
should refer to these books when you seek for detailed information about pro-
gramming in the METAFONT language. Also you may find very interesting stuff
about the history of TEX and METAFONT since 1977, typesetting on computers
in general, and the literate programming discipline used for the development of
“Computers & Typesetting.”

References

[1] Georg Heßmann et. al., ARexx Unterstützung für METAFONT, Dokumen-
tation zur Version 1.0, Description of the ‘CallMF’ package by Georg
Heßmann, Martin Bokämper, Jörg Höhle, and Ulrich Wisser for use with
PasTEX.

[2] Donald E. Knuth, Computers & Typesetting A: The TEXbook, Addison-
Wesley Publishing Company, 19th printing, June 1990. This is the reference
manual for all users of the TEX system. It describes the TEX language in
all levels of detail.

[3] Donald E. Knuth, Computers & Typesetting B: TEX: The Program,
Addison-Wesley Publishing Company, fourth printing, February 1992. This
600 page book contains the lavishly documented and annotated source code
for the TEX program, written in the WEB language.

[4] Donald E. Knuth, Computers & Typesetting C: The METAFONTbook,
Addison-Wesley Publishing Company, fourth printing, June 1990. This is
the reference manual for all users of the METAFONT system. It describes
the METAFONT language in all levels of detail.

[5] Donald E. Knuth, Computers & Typesetting D: METAFONT: The Program,
Addison-Wesley Publishing Company, fourth printing, February 1992. This
566 page book contains the lavishly documented and annotated source code
for the METAFONT program, written in the WEB language.

[6] Donald E. Knuth, Computers & Typesetting E: Computer Modern Type-
faces, Addison-Wesley Publishing Company, first printing, May 1986. This
book contains specimen of all characters found in the Computer Modern
font family, closely related to the appearance of all TEXnical documents.

[7] Donald E. Knuth, Literate Programming, Center for the Study of Language
and Information, first printing, 1992. This is a collection of texts by Knuth
related to the “literate programming discipline,” applied to the highest
extend in the TEX and METAFONT programs. Also it contains the errorlog
for TEX 82 (until September 20, 1991).

14

[8] Helmut Kopka, LaTEX–Eine Einführung, Addison-Wesley Publishing Com-
pany, fourth printing, 1992. This is the first volume of the two-part series
for German LaTEX users. It seems to be more popular than the reference
manual by Leslie Lamport.

[9] Helmut Kopka, LaTEX–Erweiterungsmöglichkeiten mit einer Einführung in
METAFONT, Addison-Wesley Publishing Company, third printing, 1992.
This is the second volume of the two-part series for German LaTEX users.
It contains an introduction to METAFONT and an introduction to literate
programming in WEB and CWEB.

7 History

This Amiga port of METAFONT 2.71 is based in part on the complete TEX and
METAFONT system supplied by Edmund Mergl on Fish Library Disks 611–616.
Starting with METAFONT 2.7 from this implementation, I introduced a lot of
modifications and enhancements. The major difference between the version by
Edmund Mergl and my own is that now METAFONT is a complete stand-alone
package, relying on self-contained source files and utilities. (See section 8.)

From the beginning I did all my programming on the Amiga with the SAS/C

development system. The latest version 6.3 of this fine compiler is fully ANSI

compliant, so it detected a list of omissions in style and speech when recompiling
the source code. A major cleanup of the extra files for C, i.e., the introduction
of prototypes and the correction of casting problems, was necessary.

As soon as version 2.7 was running, it was compared with the famous Amiga
port by Stefan Becker from Fish Library Disk 486 and proved to be much
slower, so some improvements seemed to be necessary to compete with this
system as well. The tightest sections of the “inner loop” of METAFONT were
recoded in assembly language for 68020 Motorola processors. This resulted in
an overall speedup of about twenty to thirty percent compared to the non-
optimized version and of about five to eight percent compared to the optimized
version by Stefan Becker.

Running the TRAP test proved the correctness of the implementation, and
this test routine by Donald Knuth was very convenient to find the last nasty bug
in my own part (had something to do with a variable ‘be_careful’). But visual
tests both with my own METAFONT and with Stefan Becker’s port showed prob-
lems with the online display. Neither the implementation by Stefan Becker nor
by Edmund Mergl worked in accordance with the ‘METAFONTbook’ [4]. Espe-
cially the test routine 6test.mf provided for the Computer Modern font family
caused some rethinking. (An example of this test can be found on page 192
of [4].) Finally a revised version of amiga.c was up and running, using some
advanced functions for drawing on screen, thus requiring version 2 of the Amiga
operating system.

15

Adapting some ideas by David Crooke implemented in his Amiga port of
TEX 3.141, I introduced a revised path search algorithm and the possibility
to use runtime-definable memory sizes with METAFONT. (See section 4.2 for
details about the memory configuration.)

In September 1993 the first step to version 2.71 was done with the errata
sheets provided by Addison-Wesley Publishing Company. All changes concern-
ing the new version were implemented in the change file.

Finally in October 1993 I got hold of the official version 2.714, which replaced
the old system completely. It included a new plain.mf base program and
a whole new TRAP test. The last change made to this implementation was
the introduction of a really BIG version of METAFONT (and of TEX 3.1415 by
the way) by increasing max quarterword to 32,767 (32 Kilo quarterwords) and
max halfword to 1,073,741,823 (1 Giga memwords), so now nobody will ever
exceed the maximum setting for the main memory (you would have to have
8 Giga bytes of free memory!). Everybody seems to think that ‘262,142’ is the
maximum value for memmax, although this value holds for 36 bit words only.
This C implementation works on the basis of “64 bit words,” i.e., a halfword is
defined as long int, so the very much higher value may be used.

8 Source code

This package is the “METAFONT user’s kit,” so no source code for the actual
programs is provided with it (there is a directory of the complete Computer
Modern font library, but this is a different kind of source code). A “developer’s
kit” is available from the implementor on request. If you would like to have
the complete source code, send a self-addressed envelope and 10 Deutsche Mark
(or 10 US Dollars) to the address on the cover of this documentation, and you
will receive the latest version on disk together with all necessary tools for re-
compilation and future bug fixes.

4by anonymous ftp from the Stuttgart server ftp.uni-stuttgart.de (129.69.8.13)

16

